
8999 8298–510 10–1

Section 10
Configuration and Sizing

In the following pages, we shall introduce you to the main features of SURE through an
explanation of the SURE configuration options. This document describes the theory and
procedures behind the SURE system.

Before you start working your way through this document, we strongly advise you to
familiarize yourself first with the purpose and terminology of SURE. You will find these
explanations in the next section of this tutorial. It may also be helpful to read the Product
and Technical Overview of SURE, which you can find in the Unisys eCommunity
(http://ecommunity.unisys.com).

10.1. (Configuration) Terminology

Software Configuration Management (SCM)

SCM is also known as Application Life-cycle Management and is best described in the
following bullets:

• Storage of all source-files and source related information in a central repository;

• Streamlined and secure separate environments in which all distinct activities of the
application life-cycle take place;

• Application of rules and procedures, supported by automated tools through which these
rules and procedures are implemented and controlled, and through which the impact of
changes on the application life-cycle can be monitored.

In other words: SCM is an integrated set of tools and procedures that manage/control the
software development and the deployment process.

Repository

The repository is a DMSII database on Unisys ClearPath NX/LX or A Series, into which all the
source files, delta files containing changes to these source files and other source related
information of the various applications an organization has, are loaded and safely stored.
The DMSII database provides the advantages of keeping all this information in a single data
structure and compresses this information to create a highly efficient storage. The fact that a
database is used for source storage also has the advantage of applying proper dump
procedures.

http://ecommunity.unisys.com/

Configuration and Sizing

10–2 8999 8298–510

Environment

The repository is divided into separate sections, called environments, which match the
various phases in the life-cycle support for a particular organization. Typical examples,
which are often recognized as separate phases within an organization are 'development',
'test' and 'production'.

The above given structure may be adjusted to reflect an organization’s own way of working.

Files

For each application system within an organization, all source files are stored in these
distinct environments. SURE allows storage of NX/LX source files (regardless of the file-
kind), as well as storage of any kind of PC file. Once stored into the repository, files may be
retrieved from the repository via a check out procedure and after editing, compiling and
programmer-testing, stored back again via the check in procedure.

Task

A task is a logical unit of work, and describes the reason of making changes to existing
source files or creating new files. The task may apply to a required fix of an error, or to the
development of a new feature. SURE links the task automatically to the source files that are
modified because of that task. A developer can only check out a source if the task is assigned
to him or her. Management assigns this task to one or more developers. Every time a
developer starts his or her work, he or she first "subscribes" to the task that is assigned to
him. From then on, all the work the developer does in the context of the task will be linked to
that task.

 Configuration and Sizing

8999 8298–510 10–3

Transfer of tasks

The task is the focus point for SURE to keep track of the progress of work. This means that
SURE does not allow the transfer (or promotion) of a single source file to another
environment. This is always done via the task mechanism. Since a task may involve changes
to multiple source files, the transfer of the task ensures that all the changed source files are
transferred as one unit of work, for example, from development to test and, after acceptance
testing from test to production.

Quick-fixes

When an error occurs in the production version of a program then that program has to be
fixed. Usually the program will be changed in the development environment, but it may be
possible that the program is already in maintenance in the development environment
because of another task, and in that case the fix has to be applied without disturbing the
work that is already taking place in the development environment.

RepositoryRepository

analyst
introduces

task

task

programmer
requests file

file is assigned
to a programmer

programmer
checks out a file

task assigned

to programmer

test

programmer

 modifies file

(locally)

local

PC

programmer
checks in a file

task is reported
completed

LocalLocal

Configuration and Sizing

10–4 8999 8298–510

SURE offers for this the quick-fix feature: the error is quick-fixed in the current production
version of the source, and then applied to the newer versions of the application that are
currently prepared in development and in test. The quick-fix facility avoids the re-
occurrence of the problem in the future.

If the source where the error must be fixed is not in maintenance in the development or test
environments, then the regular development (check-in/modify/check-out/transfer)
procedure can be used.

Impact analysis

A key-feature of SURE is the facility of impact analysis. With impact analysis it is possible to
determine whether a particular modification in the changed source impacts other source
files. A good example of this may be a modification in the source of a single copy -file that is
used in a number of programs. SURE knows where this copy-file is used, and SURE will
automatically compile all relevant program sources that make use of the changed copy -file.
The facility of impact analysis of SURE is continuously present throughout all phases of the
development and deployment process, and ensures the integrity of the application systems.

Windows Workbench for LX/NX development

SURE comes with a fully featured development workbench on the Windows platform that
works seamlessly with the server-part of SURE running on the ClearPath NX/LX or A Series.
The SURE workbench can be integrated with editors, compilers, and any other PC tool from
other vendors. This allows developers to download the source files that need to be
maintained from the server to a local PC, do all the modifications locally, using their own
favorite editor, do even a pre-compile with a local compiler on the PC and upload a syntax-
free source file back to the server where it is stored in the repository again.

Build support

SURE supports the automatic compilation of source files of applications for the Unisys
ClearPath LX/NX and A Series enterprise servers, such as the compilers for widely used
programming languages as Cobol, Algol, Dasdl and WFL, but also less commonly used
compilers such as Pascal, Fortran77 and C++.

SURE provides build support for the Unisys NX/LX platform as well as for the Windows
platform. On the Unisys platform, this is achieved in a direct way, by compiling the sources
directly for proper development phases for which a separate environment is kept. Through
the task mechanism of SURE supported by its impact analysis facility, the compile process is
managed automatically. The resulting object-files are kept outside of the repository;
however relevant information of the object-files (e.g. versioning) is stored.

 Configuration and Sizing

8999 8298–510 10–5

For the PC source files SURE supports the building of the necessary files for the compilation
process that takes place on the Windows platform. After compilation, the resulting
executables are loaded into the SURE repository as well.

Configuration and Sizing

10–6 8999 8298–510

Distribution support

The distribution support for ClearPath NX/LX series allows copying object files to the
defined server machines using BNA transfer. The distribution support in the Windows
environment consists of preparing a directory that needs to be distributed. A distribution
tool like Microsoft SMS or a tool like RoboCopy performs the actual distribution.

10.2. (Configuration) Quick Overview to SURE

Before we start to have a closer look at SURE, we shall first give a short overview in broad
terms of SURE and its architecture.

SURE provides a comprehensive tool-set for SCM that makes it possible for an organization
to manage and control all phases of the development and deployment process of
applications.

SURE manages the repository on the Unisys ClearPath NX/LX or A Series, in which all source
files of the organization’s applications are stored.

SURE keeps a constant eye on the changes made to the contents of the repository and takes
automatic actions accordingly, such as (multi-)compiles of the changed source files, transfer
of new versions of an application from development or test to production, etc.

SURE keeps a strict separation between work that is done during the actual development or
maintenance processes and work, which is required during production, such as error fixing.
To this extent, SURE maintains the environments, in which distinct versions of entire
applications are stored.

All activities during development and maintenance are carried out under the umbrella of the
task mechanism in SURE. This adds significant value to the development and maintenance
process in terms of completeness of work and integrity of the applications.

SURE consists of two parts, one part running on the ClearPath NX/LX or A Series that
effectively manages all aspects of the repository, does the impact analysis and provides

 Configuration and Sizing

8999 8298–510 10–7

compiler support. The other part of SURE, being the client-part, is a fully featured
development workbench on the Windows platform that works seamlessly with the server-
part.

SURE provides an organization with the means to control all of its applications, whether
these exist on the Unisys platform or on the Windows platform, in an integrated manner,
thus ensuring the quality and integrity required to support today's e-business requirements.

SURE can work in three modes:

• Source-maintenance:

 The stable version of each source is stored in the SURE repository. A developer uses
function ‘check-out’ if he wants to modify a source and function ‘check-in if the
modifications are done. SURE keeps a physical history of each source.

• Source-maintenance + tasks & environments:

 All functions of ‘source-maintenance’ plus an integrated task tracking mechanism. A task
describes the reason why a source has to be modified, and this task is linked to the
source when that source is checked-out. The (source-modifications because of a) task
can be tested in different environments (TEST, ACCEPTANCE, et cetera). SURE keeps
also a logical history of each source

• Source-maintenance + tasks & environments + application deployment:

 All functions of ‘source-maintenance + tasks & environments’ plus an integrated
application deployment mechanism. Files that are checked-in to SURE are automatically
compiled (during an evening batch). If a copy-file is changed, then the calling programs
are compiled. The location of the compiled object can be defined in SURE. SURE copies
the compiled objects to the correct object locations. SURE guards the integrity of the
total object environment.

10.3. (Configuration) SURE Configuration

SURE is a source management system, as well as a system that provides software build,
configuration and distribution support. Because of the support for these integrated software
life-cycle functions, the SURE system allows for simple configurations with just check-in and
checkout support up to complex configurations, which include support for the creation of
executables and distribution of software. This document guides you through the
configuration options and it explains the various supported procedures.

The SURE system supports UNISYS CP/NX files, A-Series files, Windows-32-bit files and
UNIX files, if they are shared from a Windows system. This document applies to all of these
mentioned types of files unless it is explicitly stated otherwise.

The SURE system contains of two different parts, a server part implemented on the UNISYS
CP/NX or A-Series, which is used as a storage server. This server part consists of a DMSII
database with a software layer around it, which let the server part behave as a repository.
This DMSII database will contain all of your definitions and sources so that a simple database
dump procedure can be used for archive purposes. The second part of the SURE system
consists of a 32-bit Windows client software package, which provides a user interface

Configuration and Sizing

10–8 8999 8298–510

similar to Windows Explorer. Server and client part are connected through native TCP/IP,
which allows you to run over a LAN or over the Internet.

The SURE system allows for a dynamic configuration. This means that the SURE system may
be tailored to the specific procedures within an organization. Because the SURE system is
flexible in its configuration, it requires that the system must be configured.

Configuring the system is not a difficult task if you are familiar with the capabilities of SURE.
However, it does require you to make decisions based on the capabilities of SURE in relation
to the procedures currently applied within your organization. Therefore, configuring the
system can be challenging if you are not (yet) familiar with the capabilities and concepts of
SURE.

Another complicating factor is that you might want to change currently applied procedures
because SURE offers other capabilities. It is obvious that some of your current procedures
must be changed when you are going to use SURE (e.g. your current procedure ‘assign a
source to a developer’ will change because that source is now loaded in SURE). Others of
your current procedures can operate alongside SURE.

SURE is capable to control up to eight different environments (design, develop, test,
integration, production, history, etcetera), each with their own set of objects in a separate
run-time environment. Run-information about the objects can be stored into SURE. SURE has
a flexible and powerful authorization mechanism that can limit the programmer’s activities.
SURE can address various modes of working, such as: shared workspaces, individual
workspaces, baselines, and etcetera.

However, you do not have to use all functions of SURE, and you do not have to activate all
desired functions at the beginning when SURE is installed.

From our viewpoint, we would like to stress that a new tool and new procedures introduce
an additional risk and this may decrease the acceptance level within an organization. For this
reason we advise to change procedures gradually afterwards if that is possible. In this way
the users are used to the tool SURE when a procedure changes.

The SURE system allows you to define rigid procedures or it allows you to define flexible
procedures. For example: SURE allows you to define that a programmer first requests a file,
after which the project leader releases the file for this programmer allowing the
programmer to checkout the file. This example of a rather rigid procedure is fully supported
by SURE with the appropriate commands and workflow queues. However SURE also
supports a procedure where the programmer directly checks out the file for a specific task.
This is a more flexible procedure, but it requires programmers that are more experienced.

10.4. (Configuration) Goal

This section contains background information, which allows you to configure a repository,
load files in this repository and finally perform lifecycle support on these files.

 Configuration and Sizing

8999 8298–510 10–9

10.5. (Configuration) Functionality

SURE is a task-based system, which requires defining a task for a functional change to an
application system. All the functional changes for this task, to different files that may reside
on different platforms, are connected to this task. This task or logical unit of work is taken
into acceptance or into production. SURE supports this procedure by workflow queues, task
distribution over different employee functions and support for the build and distribution
process.

A task is a logical unit of work that matches a functional requirement. SURE offers
functionality to group tasks together, so that those tasks are released at the same time. A
task can also be used as a release task: all the changes for a specific release, carried out by
different programmers, are grouped under this task and deployed as a new release.

SURE supports the implementation phase of software construction. This support deals
mainly with source maintenance, which is referred to as life-cycle support. This life-cycle
support deals with the simple straightforward procedures like check-in and checkout and a
role based security mechanism. On the other hand SURE offers work flow queues for the
various employee roles such as a To Do list for a programmer or a To Be Accepted list for
quality assurance employees or a Ready and Busy list for a project leader.

These lists are present in every fixed stage into your source life-cycle. Within SURE, such a
fixed stage into your source life cycle is called an environment. Furthermore: these lists may
be distributed over employee roles and filtered for specific application systems or sub-
systems.

Within the life-cycle support functions, the quick fix procedure and the impact analysis are
main sub functions.

The quick fix procedure allows you to make fixes to your production software without
disturbing the development process. Even if the file you are fixing is currently in
maintenance by another programmer. Firstly, the SURE software will prohibit accidental
overwriting of this fix, so the error cannot appear again in a new release by accident.
Secondly, the SURE software offers automated functionality to incorporate the fixes into the
standard development process.

The impact analysis allows you to detect whether different functional changes resulted in
modification of the same file and it may provide you with a compile impact, a list of
programs that need to be compiled for a change. This compile impact includes manipulation
of copy or include-files. If a copy or include file is changed, SURE will recompile all the
programs using this changed copy or include file.

Compilation and build support is an optional feature that is supported by SURE. This feature
creates the executables from the CP/NX sources as well as for PC applications. For CP/NX
software the compilation support consists of a program that compiles all the changed files
with the appropriate compiler. The repository contains definitions for file security, file
attributes, task attributes, binding and post compilation requirements. For CP/NX and A-
Series files, the resulting object is given a unique release id, which matches the current file
version of the compiled source. An especially useful command for CP/NX and A-Series is
‘recompilation of sources using a specific dataset’. Reorganizing a database always requires
such a procedure, and this procedure is smoothly integrated in the SURE software. For PC

Configuration and Sizing

10–10 8999 8298–510

and UNIX files, the repository contains the build commands. These build commands can be
seen as a .BAT file which contains the appropriate commands that are required to create the
executable. The build support for PC and UNIX files downloads all the changed files to a
server, secondly it executes the build commands per file or per directory and in the final
stage it loads the resulting executable into the repository.

Distribution support is an optional feature that is supported by SURE. Distribution support
actually copies the files to the target destination. For CP/NX and A-Series files, this may be a
user code and pack family on the same host or on another BNA host (tape transfer is still
supported for CP/NX and A-Series systems, but it is not the default method anymore). For PC
and UNIX files, a list of files is maintained of the actual files that need to be distributed. This
list can be downloaded in a directory. The SURE system supports creation of this directory.
Other sub systems must be used to perform the actual distribution. An example distribution
system is Microsoft SMS.

The minimum configuration for SURE is using a simple form of life-cycle support. Using
SURE in this fashion return direct benefits like: who changed what, where and when.
Secondly, you can view the file changes and rebuild any previous version. In this mode, a
programmer can reuse his task repeatedly.

The next stage in using SURE consists of defining your stages in a source life-cycle. These
stages (environments) will allow you to use most of the life-cycle support functions
including workflow queues.

The final stage in using SURE implies using build and distribution support. Hereafter you can
run your system with only a single person controlling it. If the SURE build and distribution
support functions are used, your total operation is automated and no manual actions are
required.

10.6. (Configuration) File Entities

• Environment

• System

• Project or sub-system

• File Type

• File

All definitions for files are assembled using the previously mentioned entities.

• An environment is a fixed version in the life-cycle of a file. For example: the test-versions
of all files form together the test-environment.

• A system is a set of files grouped together based on physical coherence, so all files using
the same database might belong to a system. At system level, different physical
attributes are defined which apply to all the files of that system. A system always
contains at least one project (sub-system): a project with the same name as the system
name. On the other hand: a system may contain multiple different other sub-systems
(projects).

 Configuration and Sizing

8999 8298–510 10–11

• The word ‘project’ can have two meanings:

− A sub-system

− An amount of work to be done.

 In the SURE context, the word ‘project’ means ‘sub-system’.

 ‘An amount of work to be done’ is in the SURE context ‘a task’.

 A project is mostly used for security reasons. Persons may be granted to perform
functions on files of one or multiple projects. From a logical viewpoint, projects are a
collection of files that are grouped functionally. The system level is mandatory within
the SURE system, however a detailed project level is obsolete in which case the system
name equals the project name.

• A file-type categorizes the files for SURE so that the same definition may apply to a
group of files. A file-type is a rather abstract definition that contains attributes such as:

− A file of this category creates delta files

− A file of this category needs to be compiled

− Etcetera

 Therefore, a file-type categorizes files in such a way that SURE performs certain actions
on those files. Notice the difference with the contents dependent file-kind attribute such
as Algolsymbol or C files. Both of these files can be split over two different SURE file-
types, the first describing that it is a include file (CP/NX or A-Series) or a header file (PC
or UNIX) and the second describing that it is a source which needs to be compiled.

10.6.1. (Configuration) Environment

A key entity in the SURE system is an environment, which can be considered as a fixed phase
in a development life-cycle.

An environment is a fixed phase in a development cycle. Common names for environments
are DEVELOPMENT, ACCEPTANCE or PRODUCTION.

In this example:

• DEVELOPMENT defines the phase where programmers adapt files for implementation of
new functionality. Module testing by a programmer is included in this phase.

• ACCEPTANCE is a phase where quality control performs integrated test scripts on the
implemented functions. Therefore, the quality control accepts functional changes and
marks them as ready for production.

• PRODUCTION is the phase where the actual software runs on the various production
systems.

Another company may have the same phases in their development as the previous example,
but they also require a hardware integration test. This company runs the application system
on different hardware using different compilers and they require a final test on the
production hardware before it is actually taken into production. This company calls this
environment BETA_SITE. Therefore, the environments for this company are called
DEVELOPMENT, ACCEPTANCE, BETA_SITE and PRODUCTION.

Configuration and Sizing

10–12 8999 8298–510

Above given example defines a software life-cycle often used in companies writing their
internal software. Mostly these companies do not support official releases of application
packages; however this is a default requirement by software manufacturers. The previous
example shows a production environment that contains all the files required to support the
production application systems of the company.

If we would consider a software manufacturer, then the environments would be used more
dynamic. Again, one could support DEVELOPMENT and ACCEPTANCE as their lowest
developments environments. The development process and quality control may be
performed in the same sequential flow. However, after acceptance, multiple different release
environments may be present. So after the environment acceptance a RELEASE_5.0
environment may be present and thereafter RELEASE_4.0 and thereafter RELEASE_3.0. A
software manufacturer often supports multiple different releases because each release may
still be in use by one of his customers for which he agreed a support contract. A customer
running software release 3.0 may require patches that must be created via software updates
on release 3.0. Another customer running on release 4.0 requires updates for that release.

The software manufacturer has the two lowest environments (development and acceptance)
for his own life-cycle purposes. The number of environments after acceptance and their
names may vary. If an old release is not supported any more, then the environment is
deleted. If a new release is created, then a new environment for that release is created.
Therefore, when release 6.0 is created, a new environment is created called RELEASE_6.0
directly above the acceptance environment. The content of this RELEASE_6.0 environment is
copied upwards from the acceptance environment.

Now let us have a more detailed view on the contents of such an environment. First, each
environment contains all sources. Each environment has a corresponding compile & build
process and that process uses the sources from that environment as input to create the
object files & executable files. Additional definitions that are used to create the executables
(such as task attributes, file attributes, translate tables and build commands) are stored in
the repository. The repository also contains definitions that support the distribution process
(object locations).

As described, an environment contains all the sources, however for PC files it will also
contain the resulted executable. This is not true for CP/NX and A-Series files where the
executables are not loaded in the repository.

For maintenance reasons the definitions for build and distribution support are usually not
defined at individual file level. There are three entities that contain most of the build and
distribution definitions: file-type, system and project.

An environment contains all files. Each environment can contain another version of a
specific file, but a specific file-version can also be in use in multiple environments. The files
are grouped in application systems and a release notion can be defined for a system.
Therefore, an environment contains multiple systems and a system contains a set of files for
a defined release. An environment contains a release for each defined application-system.

 Configuration and Sizing

8999 8298–510 10–13

10.6.2. (Configuration) System

System is the most important configuration entity.

A system is a set of files grouped together because they share the same physical attributes. In
the SURE software, this applies to the attributes work-location and object-location. These
work and object characteristics are defined per environment.

10.6.2.1. (Configuration) Work Location and Object Location

The work-location is only applicable for CP/NX files and it designates the directory
(usercode and the pack name) where the shared resources are located. With shared
resources, we mean copy files or include files, a database description file, and etcetera.

The work location is used for two purposes:

• The work location defines the shared resources directory.

 Shared and stable resources (copy files, description file, etc.) are used by programmers
when they do a test compilation of a source that they have in maintenance. It is obvious
that the version of a copy-file can change per SURE environment. The programmer
expects that the correct version of each copy-file is available on disk in the shared
resources directory, otherwise he cannot compile his source correctly.

• The work location determines the programmer’s work directory.

 The programmer has to be logged on to this directory when he wants to work on a task
(updating sources that are loaded in SURE). The sources-in-maintenance are placed in
this directory.

If a file has an object-location then it can be deployed. The object-location of a CP/NX file
determines the destination directory (usercode, pack, and host) for the resulting object after
the source is compiled by the SURE batch. The object-location of a PC/UNIX file determines
the logical server name where the build process is done.

The object-location of a system is the default object-location. When a new file is added for
that system, then that file inherits the default object-location.

The object-location is applicable for both CP/NX files and PC/UNIX files, but the
implementation for both kinds is different.

• For CP/NX files the object-location designates the default directory (usercode, pack
name and optionally the host name) for the resulting objects after they have been
compiled by the SURE build support. In other words: the object destination for the
distribution support.

Configuration and Sizing

10–14 8999 8298–510

• For PC/UNIX files, the object-location is a logical server name, which is assigned as the
build server. In other words: the executables for this system are built on the assigned
server. Therefore, for PC/UNIX files, the object-location defines the server where the
actual build process is executed. The build process copies all the changed files (with that
build server) to the configured directories and start the build commands. Therefore, you
can just define the same build server for every environment if you configured different
directories per environment for this server.

Summarized:

The work-location of a system affects the programmer’s way of working because it defines
the directory where the shared resources are placed, and it determines the directory where
the developer must be logged-on to be able to do his job. The object-location of a system is
only a default value for the object-location of a file and it does not affect the programmers’
way of working.

From the previous description, you might conclude that a system is merely a technical
separation. However, in most circumstances a system is defined as an application system
such as a mortgage system, a credit card system, a stock exchange system or a general ledger
system. This is because all of the files within such a system normally share the same work
and object locations.

The SURE manual (chapter Copy Files) goes into detail on all the different options that
influence the work-location, including a rather complicated option called ‘resources’.

A SURE repository is sub-divided into multiple environments (for example: develop, test and
production). A file is modified in the develop environment, and transferred from develop to
test and production. If a file is transferred to production then it is equal in all environments,
until somebody makes another modification to that file in the develop environment.

Notice again that a stable file is equal in all environments, and therefore it is important that
all usercodes and packnames are removed from the sources that are loaded in SURE
(because production usercodes/packnames are usually not the same as test or develop
usercodes/packnames).

 Environment

Repositor
y

Repositor
y

NX/LX sourcefiles

PC sourcefiles

PC
Executables

PC executables
Compile Compile
 Interface Interface Build Build

Support Support

Compile Compile

Load Load
CP/NX

Executables

 Configuration and Sizing

8999 8298–510 10–15

The following paragraphs explain some basic configurations on which you have to decide.
These configurations depend basically on the definition of the work-location.

Notice again that the work-location is defined per system, and that makes it possible to use a
different configuration for each application system.

10.6.2.2. (Configuration) Private Workspace / Shared Resources

Characteristics:

• Each developer has his own personal usercode to log on.

• Each developer has his own personal workspace where he does his work (editing,
compiling, and testing). This personal workspace is identified by his personal log-on
usercode.

• The shared resources are placed in the global directory * (without a user code) on the

work pack.

The sources don’t contain any usercodes and packnames.

A programmer logs on with his personal usercode and checks a file out of SURE. The source
is placed on disk under his personal usercode. The copy-files that are used by the source
must be resident on disk, otherwise it is not possible to compile that source.

The copy-files are resident in the shared resource directory (* on the work-pack) and these
file are available for the developer via the standard visibility rules of Cande: if a copy -file is

develop acceptance production

Work pack = DEVPK

Directory *

..copy-files

(JIM)

..files

(BEN)

..files

Directory * for shared resources

(copy-files, description files etc)

Each developer has his own

personal usercode where he works

(private workspace)

CANDE develop

environment

SURE repository

with

3 environments

= Check-out/check-in files from SURE to the private workspace

develop acceptance production

Work pack = DEVPK

Directory *

..copy-files

(JIM)

..files

(BEN)

..files

Directory * for shared resources

(copy-files, description files etc)

Each developer has his own

personal usercode where he works

(private workspace)

CANDE develop

environment

SURE repository

with

3 environments

= Check-out/check-in files from SURE to the private workspace

Configuration and Sizing

10–16 8999 8298–510

not resident under the developers’ personal usercode, then that copy-file is found in the
shared resource directory.

If a copy-file is checked-out from SURE, then that copy-file is also placed on disk under the
developers’ personal usercode, where the developer modifies that copy-source. The
modified version of the copy-file is only visible for the developer who checked the file out.
The other developers (who are logged on with other usercodes) still use the stable version of
the copy-file from the global directory *.

If the new version of the copy-file is checked-in to SURE, then it is removed from the
developers’ personal workspace and copied to the shared resource directory (* on work-
pack) where it is visible for the other developers.

An advantage of this option is that other users are only aware of the modification of a copy -
file after that copy-file is checked in. A developer changes a copy-file in his own private
workspace, and the test results of other developers are not affected by the changed copy-file.

Mode ‘Private workspace with shared resources’ can be defined with the following system
options:

• The ‘shared resources’ functionality is established by option ‘Put changed copy -files in
work-environment’.

• The ‘private workspace’ functionality is established by: Work-location-usercode = *

Example

Consider copy-file SYS1/COPY/001.

• Version 3.1 of that copy-file is active in all SURE environments and that version is also
available in the shared resource directory: *SYS1/COPY/001 ON DEVPK.

• Programmer Jim does a check-out of the copy-file and the source is copied from SURE to
his private workspace: (JIM)SYS1/COPY/001 ON DEVPK

• Jim modified the copy-file in his private workspace. Test compilation started by Jim use
the copy-file in his private workspace, because the source that references the copy-file
does not contain usercodes/packnames in the copy-statements.

• Programmer Ben uses all the time the stable version 3.1 of the copy-file.

• Jim finished his work on the copy-file and does a check-in. The new version of the copy-
file is loaded in SURE with version number 4.1; the copy-file is removed from Jims’
private workspace and copied to the shared resource directory.

• From now one version 4.1 of the copy-file is used by all developers.

10.6.2.3. (Configuration) Shared Workspace / Shared Resources

Characteristics:

• All developers modify their sources in the same workspace (usercode/pack).

• The source files and copy-files are maintained under that same usercode.

 Configuration and Sizing

8999 8298–510 10–17

• The shared resource files (copy-files, description-files) are placed on disk under that
same usercode.

The main differences between this mode and the previous mode (private workspace with
shared resources) are:

• The user does not have an individual work environment. So, during the modification of
files, every other user may be affected during the module test.

• All copy-files are always available in the shared workspace. That makes it possible to
change a copy-file without officially checking it out from SURE. This situation is not
critical for the production environment because such a file cannot be checked-in, but it
may cause temporary questions (who changed his source and why did he do that?).

Each developer still logs on to SURE with his own personal usercode. This log-on usercode is
only used for identification purposes. If the developer checks a file out, then that file is
placed in the shared workspace.

Mode ‘Shared workspace with shared resources’ can be defined with the following system
options:

• The ‘shared resources’ functionality is established by option ‘Put changed copy-files in
work-environment’.

• The ‘shared workspace’ functionality is established by: Work-location-usercode =
<usercode>

Example:

Consider the shared workspace (SYS1) ON DEVPK

• User Jim logs on to SURE with his personal usercode JIM

• He checks a file out of SURE, and the file is placed on disk as (SYS1)SYS1/PROG/001 ON
DEVPK.

develop acceptance production

Work pack = DEVPK

(SYS1)

..copy-files

..files in maintenance
All developers of the same team

work under the same usercode

(shared workspace)

CANDE develop

environment

SURE repository

with

3 environments develop acceptance production

Work pack = DEVPK

(SYS1)

..copy-files

..files in maintenance
All developers of the same team

work under the same usercode

(shared workspace)

CANDE develop

environment

SURE repository

with

3 environments

Configuration and Sizing

10–18 8999 8298–510

• He checks a copy-file out of SURE. The copy-file is placed on disk as
(SYS1)SYS1/COPY001 ON DEVPK.

• The source and copy-file are now visible for all other team members that work on
system SYS1.

10.6.2.4. (Configuration) Private Workspace / Private Resources

Characteristics:

• Each developer has his own personal usercode to log on.

• Each developer has his own personal workspace where he does his work (editing,
compiling, and testing). This personal workspace is identified by his personal log-on
usercode.

A checked-out source is placed in the private workspace of the developer. All copy-files that
are referenced by the source are also copied in the same private workspace. When the
source is checked-in then the copy-files are checked and cleaned-up (copy-files that are not
referenced by other checked-out sources are removed from the private workspace).

This mode is defined with the following system options:

• The ‘private resources’ functionality is established by resetting option ‘Put changed
copy-files in work-environment’.

• The ‘private workspace’ functionality is established by: Work-location-usercode = *

develop acceptance production

Work pack = DEVPK

(JIM)

..copyfiles

..files

(BEN)

..copyfiles

..files
Each developer has his own

personal usercode where he works

(private workspace)

CANDE develop

environment

SURE repository

with

3 environments develop acceptance production

Work pack = DEVPK

(JIM)

..copyfiles

..files

(BEN)

..copyfiles

..files
Each developer has his own

personal usercode where he works

(private workspace)

CANDE develop

environment

SURE repository

with

3 environments

 Configuration and Sizing

8999 8298–510 10–19

10.6.2.5. (Configuration) Multiple Baselines

Characteristics:

• Each developer has his own personal usercode to log on.

• Each developer has his own personal workspace where he does his work (editing,
compiling, and testing). This personal workspace is identified by his personal log-on
usercode.

• The total development staff that works on the same application system is subdivided in
several development teams.

• Each team works on a separate big task (also known as a baseline)

• Modifications that are made for a specific baseline may not be visible for other baselines
unless the project leader of the other baseline explicitly accepts these modifications.

Each baseline is linked to a separated work pack.

If option ‘put changed copy-files in the work-environment’ is set for a specific baseline, then
that baseline works with shared resources.

If option ‘put changed copy-files in the work-environment’ is reset for a specific baseline,
then that baseline works with private resources.

If Work-location-usercode = * for a specific baseline, then each developer of that baseline has
a private workspace.

If Work-location-usercode = <usercode> for a specific baseline, then all developers of that
baseline work under the same shared workspace.

A patch (modification) to a source is done within a baseline, and the name of the baseline is
linked to that patch. Patches of a specific baseline are not visible (in copy-files or in compiled

develop acceptance production

Work pack for

baseline SYS1:

DEV1PK

Shared resources

of baseline SYS1

(JIM)

..files

(BEN)

..files

A separate workpack for

each baseline.

Each developer has his

own personal usercode

where he works (private

workspace).

This personal usercode

can be applicable for

each baseline

CANDE develop

environment

SURE repository

with

3 environments

Work pack for

baseline BASE2:

DEV1PK

Shared resources

of baseline base2

(JIM)

..files

(BEN)

..files

develop acceptance production

Work pack for

baseline SYS1:

DEV1PK

Shared resources

of baseline SYS1

(JIM)

..files

(BEN)

..files

Work pack for

baseline SYS1:

DEV1PK

Shared resources

of baseline SYS1

(JIM)

..files

(BEN)

..files

A separate workpack for

each baseline.

Each developer has his

own personal usercode

where he works (private

workspace).

This personal usercode

can be applicable for

each baseline

CANDE develop

environment

SURE repository

with

3 environments

Work pack for

baseline BASE2:

DEV1PK

Shared resources

of baseline base2

(JIM)

..files

(BEN)

..files

Work pack for

baseline BASE2:

DEV1PK

Shared resources

of baseline base2

(JIM)

..files

(BEN)

..files

Configuration and Sizing

10–20 8999 8298–510

objects) for the other baselines, unless the project leader of another baseline explicitly
accepted the patch.

The source can be checked-out for two different baselines at the same time.

The patches of all baselines are all merged into the source in the first environment where the
baselines are not defined.

Example:

The objects on pack DEV1PK are created from the development environment in SURE and
contain only the patches of baseline SYS1.

The objects on pack DEV2PK are created from the development environment in SURE and
contain only the patches of baseline BASE2.

The objects that are created from the acceptance environment in SURE contain the patches
of both baselines SYS1 and BASE2.

Extra baselines are defined via system option ‘Is baseline of’.

Example:

Consider system SYS1 and an extra baseline for that system BASE2

BASE2 is an extra baseline of SYS1: BASE2 is baseline of SYS1 with work pack DEV2PK

SYS1 must be a baseline of itself: SYS1 is baseline of SYS1 with work pack DEV1PK.

10.6.2.6. (Configuration) Hybrid Configuration

Many complex configurations are grown from using own tools and procedures. This may
imply generation of jobs with different object names for test and production, replace utilities
that replace the copy or include statements for test and production, etc.

The work environment and object environment are used for the build support, distribution
support and the workspace of the programmer. You can always use SURE for check in and
check out purposes in combination with your current procedures. In this mode, you do not
use the automated mode for build and distribution support and you only use part of the life-
cycle support. However, you still can use many other SURE features like the auditing, log,
delta files, PC editing, impact analysis etc. Using this start, you could convert different
systems gradually if required.

10.6.2.7. (Configuration) Summary

 Configuration and Sizing

8999 8298–510 10–21

The following picture shows a develop environment with shared resources and private
workspaces, and test and production environments with shared resources and a shared
workspace.

The following options are applicable in the discussion of workspaces:

• File Type: Use as Copy file (SURE manual chapter 32)

 Files that are actually referenced by other programs as a copy-file behave automatically
as a copy-file (and will be placed in the shared resource directory if option ‘put copy -
files in the work-directory’ is set).

 It is possible to link this copy-file-behavior to other files via file-type option ‘use as copy-
file’.

• System: Put Copy files in the work directory (SURE manual chapter 14)

 This option puts each copy-file and each file that behaves like a copy-file in the shared
resource directory after it has been changed.

• System: Work Environment (SURE manual chapter 14)

 This option defines the shared resource directory

TESTDEVELOPSURE

REPOSITORY
ENVIRONMENTS

WORK

ENVIRONMENTS

include files
objects

description files

PRODUCTION

(user1) (user2) (userN)

sources

sources

sources

workusercodes

(1 per programmer)

obj obj obj

RUN-TIME OBJECT
ENVIRONMENT

SURE BATCH
USERCODES

* ON <workfamily> (TEST) ON <test

object family>

(PROD) ON <prod
object family>

copy develop objects
to <workfamily>

copy test objects
to <test object family>

copy production objects
via tape or via BNA

* ON <workfamily> (TEST) ON <family> (PROD) ON <family>

test copyfiles prod. copyfiles

prod. descriptionfile

quick-fixes
in

production

quick-fixes
in

test

develop
evening
batch

test
evening
batch

production
evening
batch

Configuration and Sizing

10–22 8999 8298–510

Workspace Resources Put Copy in Work Work User Code

Private Shared Y *

Shared Shared Y <usercode>

Private Private N *

10.6.3. (Configuration) Project

A project is a sub-system.

The project definition within the SURE system is optional. When you have created a system,
a project with the same name as the system name is implicitly defined within the SURE
system. So effectively, you can have an installation without specific projects defined. From a
hierarchical point of view, a system can have multiple projects and a project can have
multiple files. However, a file or a task can only belong to a single project.

Example:

Consider system SYS1 with project PRJ1 and system SYS2 without specific projects.

A system is always a project of itself, so the following system/project combinations are
available:

System Project

SYS1 SYS1

SYS1 PRJ1

SYS2 SYS2

If a file is added for project PRJ1 then it is automatically linked to system SYS1.

If a file is added for project SYS2 then it is automatically linked to system SYS2.

It is not necessary to define specific projects. Each system is always available as project, and
if the system and project are always the same then there is no need for extra projects. On the
other hand, a project may be used just to define new tasks. There is an automatic naming
standard where the name of a new task is based on the project name. This makes it possible
to identify a task by its names as being a task of a certain project.

The major functions that apply to projects are:

• Security (SURE manual chapter ‘Authorization mechanism’):

 The security map is defined per employee function. This is commonly seen as ‘role based
security’. The granularity of a security map can differ. It can be global and then it applies
to all environments and to all projects (who can do what?); or it can be specific and it
applies to a specific environment (who can do what in which environment?) and/or to a
specific project (who can do what in which environment for which group of files?).

 Configuration and Sizing

8999 8298–510 10–23

 It is possible to define securities global, per application system and per project. The most
detailed level of security definition is at project level.

− Global securities apply to all systems (and all projects).

− Securities that are defined for a system apply to the system itself and to all projects
of that system.

− Securities that are defined for a project apply only for that project.

 The example screen shows a security definition for an employee function programmer
who has different securities for DEVELOP and PRODUKTIE and in PRODUKTIE extra
securities for system DEMO.

• Task Names (SURE manual chapter ‘Task’)

 The name of your task, constructed by the SURE system at task entry, is by default
derived from the project. The default name-standard is the project name separated by a
dash and a four-digit number (e.g. PRJ-1234). It is possible to overrule this naming-
standard by your own formula, or by a naming-standard for task-groups.

Configuration and Sizing

10–24 8999 8298–510

• Task Routing (SURE manual chapter ‘Task’)

 The task routing function affects the content of the workflow folders that are maintained
by the system: Tasks To-Do, Tasks Busy, Tasks Ready, Tasks To-Assign and Tasks Quick-
Fixed. The workflow queues are available for each environment and they contain tasks
with a specific status (the ready-queue in the develop environment contains all tasks
that have status DEVELOP and are marked as ready-(to-transfer)). These queues are
visible in the user interface under folder Life-cycle:

 The SURE system performs the task routing based on a number of variables, one of them

being the project for which the task is defined. The other variables that are evaluated are
the employee function and the team:

− A user can be assigned to a team and to one or more employee functions.

− One or more project can be assigned to a team or a user.

 The tasks To-Do list contains the tasks that are assigned to your personal usercode or to
one of your employee functions or to one of your teams, and that belong to a project
which is linked to your team or your personal usercode.

 Using projects in combination with security can provide distinct separated logical parts
in the repository. Note that the same functionality applies if you did not create projects,
however the project name then is equal to the system name.

• Naming Standards (SURE manual chapter ‘Name Standards’):

 Naming standards are used by the SURE system for the construction of task names (see
earlier in this section) and file-names.

 Naming standards for file names can be implemented as follows:

− The new filename is determined by SURE according to a predefined naming
standard formula.

 Configuration and Sizing

8999 8298–510 10–25

− The new filename is determined by the user, but checked by SURE according to a
predefined naming standard formula.

− A mix of these two options.

 The project name is one of the variables that you can use in this name standard
definition.

 The naming-standard formula must be defined per file-type.

 It must be defined per system whether or not naming-standards have to be used.

10.6.4. (Configuration) File Type

The file-type definition categorizes files with the same SURE characteristics. The file-types
are separated for the CP/NX files and the PC files where both allow for slightly different
characteristics. This document addresses the most common used file-type characteristics.

• CP/NX shared resources:

 These are copy-files (or other files) that must be visible for all team members in a
shared work environment.

Configuration and Sizing

10–26 8999 8298–510

 If you are using a shared work environment (see earlier in this chapter), then a file-type
is required for copy files (or other files) that you want to be refreshed in that shared
work environment after such a file is changed and checked-in to SURE.

 The file-type option “Use as Copy file” in combination with the system option “Put copy
files in the work location after Check-in/Load” will make SURE copy a file of this type to
the work location. The work location contains a stable version of each copy-file. The
developers use these stable copy-versions to compile their programs.

• CP/NX source files:

 Build support for the CP/NX files requires an object location to be defined for a file. This
object location triggers the build support program (RESPECT/SURE/COMPILE) to
invoke the appropriate compiler when the file must be compiled. The appropriate
compiler is determined from the file-kind of the file. Source files are usually defined with
a file-type with option “Inherit default object user/pack” set. This option triggers that
the file inherits the object location defined for the system of the file. Therefore, the
usercode, pack family name and hostname defined in the object environment for the
system of the file, are applied to that file. As a result, the appropriate compiler is invoked
for this source file resulting in an object file, which is copied to the destination by the
distribution support.

 By default, the object name for a source file is named OBJECT/<source>. For individual
files, you can alter this default under the file properties. If there is a company wide name
standard for object names, then that name standard may be coded in a library, which is
defined in the global options.

 Copy files usually do not have option “Inherit default object user/pack” set, and that
results in skipping the copy-files for the actual compilation.

• CP/NX data files:

 If you have data files that are stored in the SURE repository, a number of options may be
of interest.

− First of all the SURE build support will never invoke a compiler, because the file kind
does not match a supported compiler on the CP/NX system.

− If you want these data files to be refreshed in the shared work location, you need to
set the file type option “Use as Copy file” in combination with the system option “Put
copy files in the Work environment after Check in/Load”.

− If you want these files to be copied into your production environment by the
distribution support, you need to set file type option “Inherit default object
user/pack”.

 Note that you can check-in, checkout and transfer any type of file, also binary files. The
binary files require two additional definitions, one which will skip the delta file creation
and one that will skip the examine process. The corresponding options are Skip delta
files after check in and Skip examine after check in. These two options are also
applicable for CP/NX data files.

• PC input build files:

 PC input build files are files that are used as input in a build process that creates PC
executables. Example of PC input build files are: make-files, command-files, source-files,
header-files, project-files etc.

 Configuration and Sizing

8999 8298–510 10–27

 These build files are the primary input files to the build process. This definition excludes
the intermediate files and it also excludes the resulting binaries or executables.

 The build process on the PC is responsible for downloading changed files to your PC and
thereafter starting the build command for a file or a directory. A file must have its
object-build- server defined to make this download happen.

 The mechanism is similar to the object-inheritance mechanism for CP/NX files: The file-
type option “Inherit default object user/pack” in combination with the system attributes
for the object environment defines the inherited build server for a file.

 With this object server defined for a file, the build process has its parameter for
download and the build process.

 Notice that the build server name is a virtual name; it does not have to be an actual
server name. Furthermore, the download directories are defined in the PC SURE options,
and they are usually different per environment. For this reason, the build server name
may be equal for every environment.

• PC distributed files:

 PC distributed files are files that need to be distributed in your PC network. SURE can
download a directory with all the files that need to be distributed, but SURE is not
responsible for the actual distribution (putting the downloaded directory on a CD-rom
and deploy, etc.)

 A PC distributed file may be a manually checked in file like an EXE, DLL, INI, BAT or any
file, which can be part of the standard deploy process. On the other hand: it can also be
an EXE, DLL, INT or any file that is the result of the build process controlled by SURE.

 A “manually checked-in distributed file” must have a file-type with option “software
distribution” set.

 A “distributed file as a result of the build process” is automatically loaded by the SURE
build process. A file resulting from a build process is slightly differently defined within
the SURE repository. The first possibility is that you define a “Naming standard for the
executable name at enter” with the “file type for loaded executable at enter” for a file
type. This implies that if a file is loaded with this file type, an executable file is defined
for this file. Secondly, you may define an executable file manually, via file properties →
configuration → executables.

 Normally an executable file is a binary file, therefore it should not create delta files,
should not make part of the examine process and it should be distributed. These settings
can be achieved by the following options: “No delta files after check in”, “Skip examine
after check in” and “Software distribution”.

• PC binary files (MSOffice):

 PC binary files are files for which no delta files are created. When no delta files are
created, no difference and reconstruct facilities are present.

 A PC binary file is a manually checked in file, where SURE is used as archive mechanism.
So Microsoft office files or any other file may be used in this mode.

 Example: a “manual checked-in distributed file” has the file type option “no delta files
after check in” set, which results in ignoring delta files for every file of this type.

• PC copy files:

Configuration and Sizing

10–28 8999 8298–510

 PC copy files are files that are used as copy or include files within PC languages
recognized by SURE. Current supported languages are C, C++ and Micro Focus COBOL.
The SURE software scans sources of the previously mentioned languages for references
to copy-files. Often only a part of the name is identified in the include statement, namely
the last node of the file. The PC compiler finds the actual file using an environment
variable like INCLUDE. The examine process uses the file type option called ‘Last Node is
used as ID for copy-files’ to achieve the same type of behavior. As a result of this option,
the source file is connected to the actual full copy-file name if it exists for the node.

• PC C, C++ or COBOL source files:

 PC source files are files containing a language recognized by the SURE examine process.
The examine process scans sources for references to copy-files and stores that
information in the repository. Currently the languages C, C++ and Micro Focus COBOL
are supported. Although any type of language can be loaded into the SURE, the examine
process only recognizes the above-mentioned languages.

 If the examine process relates a source with a copy file, it will use this information in the
compile process. If the copy file is changed, and therefore automatically compiled, the
SURE system will implicitly recompile all the sources using this copy file. This side effect
of the examine process is mostly used for the supported languages.

 Setting this option requires the files to be loaded with a file type containing the
indication “Use as C/C++” or “Use as Micro Focus COBOL”.

• PC text files:

 A PC text file is any file containing plain text, of which you want to track the changes.
Therefore, a PC text file may be an INI, BAT, PAS, TXT, and et cetera file. In principle, you
could edit such a file with notepad. These files are stored in the SURE repository with
their delta files. Using the delta files you can always trace the changes that are made to
the source.

 Defining PC text files requires a file-type with the option “Skip examine at Check In” set.

 Configuration and Sizing

8999 8298–510 10–29

The following table summarizes the described file types:

10.6.5. (Configuration) File

The file is the smallest entity stored in the repository. The file (and its contents) is stored in
every environment in the repository.

Except for the file contents, a lot of other information is stored around the file entity and
used within the SURE functionality:

Type o f File

Us e as

Co py

File

Put

Co py

in

Wo rk

Inhe rit

…

Obje c t

Us e r/

Pac k

S kip

De lta

File

S kip

Exam ine

Las t

No de

Us e d as

ID fo r

Co py

S o f tw are

Dis tri-

but io n

C,

C++,

COBOL

CP/NX shared

resources

CP/NX source files

CP/NX data files

PC input build files

PC dis tributed files

PC binary files

(MSOffice)

PC copy files

PC C, C++ or

Cobol source files

PC text files

 = This option is required for this file -type.

= This option may be applicable for this file -type .

Configuration and Sizing

10–30 8999 8298–510

• At Load or check-in time, the file content is stored in the repository. At checkout time,
the file content is retrieved from the repository and made available through a standard
file. Therefore SURE is required at check-in/out time. On the other hand: a developer
does NOT need SURE while he is working on the source.

 In general, you can use any tool in the development environment, so development may
still be done in the same way as always is done. This applies to CP/NX files and PC/UNIX
files.

 For the CP/NX files SURE offers a partial workbench, which allows usage of various PC
editors integrated with the compilers on the CP/NX machine. SURE allows local file
editing in combination with a smooth integration with the CP/NX compilers. Thus, the
file is edited on the PC and compiled on the CP/NX machine without any special actions
from the developer.

 If you are using NX/Edit, which also contains a partial workbench, then you won’t use
the full SURE workbench. In that case SURE is only used for check-in/out but NX/Edit
handles the compilation of the source.

• SURE contains a version indication, which consists of a major and a minor number
separated by a point. The major number indicates how many times a file is transferred
from one environment to another environment. The minor number indicates how many
times the file was checked in to the environment. An example is given in the following
table:

Environment

Step 1: Check

Out/In

Step 2:

Check

Out/In

Step 3:

Transfer

Step 4:

Transfer

Step 5: Check

Out/In

DEVELOP 5.1 -> 6.1 6.1 -> 6.2 6.2 6.2 6.2 -> 7.1

TESTING 5.1 5.1 6.2 6.2 6.2

PRODUCTION 5.1 5.1 5.1 6.2 6.2

 Step 1 and 5: The first check-out/in in a cycle raises the major number by one.

 Step 2: A second check-out/in in a cycle raises the minor version number by one.

• SURE does not allow checking out a file in the same environment by more than one user
code at the same time (unless the baseline method is activated). However, it does allow
checking out the file in different environments at the same time. Therefore, while the file
is checked out in development, it can also be checked out in production. This mechanism
allows solving production errors without disturbing the development process. An
example is given in the following table:

 Configuration and Sizing

8999 8298–510 10–31

Environment

Step 1:

Check

Out/In

Step 2:

Check

Out/In

Step 3:

Reprocess QF

Step 4:

Transfer

Step 5:

Transfer

DEVELOP 5.1 -> 6.1 6.1 6.1 -> 6.2 6.2 6.2

TESTING 5.1 5.1 5.1 6.2 6.2

PRODUCTION 5.1 5.1 -> 5.2 5.2 (reprocessed) 5.2 6.2

 Step 1: the source is changed in develop.

 Step 2: the source is quick-fixed in production.

 Step 3: the quick fix of production is reprocessed in develop.

 Step 4 and 5: the develop sources (with the develop patch and the reprocessed quick fix)
is transferred to acceptance and production.

• SURE keeps delta files of two successive file-versions in an environment. With these
delta files, it is possible to rebuild any old version of an individual file.

Environment Delta files between file version

DEVELOP - 5.1 and 6.1- 6.1 and 6.2

TESTING - 5.1 and 6.2

PRODUCTION - 5.1 and 5.2- 5.2 and 6.2

• Source management is a main function for SURE, however other integrated functions
such as Build support, Distribution support, Life-cycle support via task management also
require definitions at file level. For this reason, the file entity contains a lot of additional
information, which can be set via the file property function. A summary of information
stored at file level is given in the next table

Build Support Build Server PC/UNIX

 Build Command PC/UNIX

 Executable PC/UNIX

 Task Attributes CP/NX

 Binder specification CP/NX

 Multiple Object Names CP/NX

 Post Compile Processing CP/NX

Distribution Support Distributed file PC/UNIX

 Object Location CP/NX

Life-cycle Support Current Task

 Historical Task

 Delta Files

 Log

 Run Time Statistics CP/NX

Configuration and Sizing

10–32 8999 8298–510

Query Support Copy/Include Files

 Database CP/NX

 Dataset CP/NX

 etc. CP/NX

• Files can be entered in the system in various ways. Initially files will be loaded per
directory. For both file categories (CP/NX and PC), a batch load facility is present in
SURE.

− CP/NX files:

 Select a directory or file from the CP/NX source directory and select function ‘Load
in SURE’ from the property menu.

− PC Files:

 Select function ‘Tools→PC-Environment→Load files in SURE’ from the top-level
menu. Files can be loaded from the defined local work directory in the SURE option.

 Loaded files require the attributes ‘Project’ and ‘File Type’. SURE uses these attributes to
complete the individual file definition.

• Files can also be entered in the system using the Edit/New/File function from the main
menu. This function will normally be used when new files are created in an existing
project. However, the load function is always available and can always be used to load a
single file or a directory of files.

 The following table shows the functions that affect the life-cycle of a file:

Creation: Modification: Deletion:

Edit/New/File Check Out/Check In Delete

Load using initial load option Recover Purge

 Replace Rename

 Reprocess Quick Fix

 Apply Quick Fix

 Load using replace option

10.7. Configuration) Task Entities

• Task Priority

• Task Type

• Task Group

• Task

All definitions for tasks are assembled using the previously mentioned entities.

• A task priority categorizes a task in different priorities.

 Configuration and Sizing

8999 8298–510 10–33

• A task type defines a task category including the start environment for the task. So
normally you would create task types for each environment where you are going to
make changes.

• A task group may combine a task type and a project. In this case, the name of the task is
derived from the task group. If a task group is not used, the project name must be
entered at task definition, and the name of the task is derived from the project name.

Chapter ‘Task’ of this manual gives detailed information about tasks, task-types and task-
groups, and about the flow of a task in the EDP department.

10.7.1. (Configuration) Task

The task is the major controlling entity for life-cycle support, and defined at a global level in
the repository. Global level means: the attributes of a task are visible and equal in all the
environments. So if you select a task in the environment production and you show the
properties, you will see exactly the same information as in develop or in any other
environment.

This differs from the FILE concept, because a file is stored in the repository at environment
level. The attributes of a file in environment production are not always equal to the
attributes of a file in the develop environment.

The task is the functional unit of work. It contains various descriptive texts or an attachment.
Changes to files are linked to a task by issuing the task name at check-out time. A task can be
transferred to the next environment when all linked files are checked-in. If the task is
transferred to the production environment, then the task-status becomes ‘solved’, and all
linked files are added to the history of the task, and the task is added to the (logical) history
of each linked file.

The task life-cycle can be integrated with an email system. If a task is assigned to a group of
people or to an individual, an email can be sent to an email address. If a task changes from
status, an email may be sent to the issuer of the task.

The task entry form can be customized so that it requires minimal input.

The following table defines the functions that affect the life-cycle of a task:

Creation Status Change Close

Edit/New/Task Assign Close

 Priority Deny

 Ready Delete

 Transfer

 Activate

Configuration and Sizing

10–34 8999 8298–510

10.7.2. (Configuration) Task Type

The ‘task-type’ is the only attribute for a task that has impact on the life-cycle functions that
can be performed using the task. This is because the environment where the task starts (the
task-environment) is inherited from the task-type. A newly added task inherits the task-
environment from its task-type.

The task-environment determines the environment where fixes for tasks of this type must
be made. You can only change a file if you are linked to a current task, and the changes must
be made in the task-environment of that task.

The task-status determines if it is allowed to make changes for the task at this moment. You
can only change a file if the status of your current task is equal to the task-environment of
your current task.

Example:

• Suppose you have a task with environment DEVELOP and status DEVELOP. It is now
possible to make this task current in the develop environment and to change a file
because of this task in the develop environment.

• If you transfer the task to the acceptance environment, then the task-status becomes
ACCEPTANCE. You cannot make changes in acceptance because the task-environment is
still DEVELOP, and you cannot make changes in develop because the task-status is
ACCEPTANCE.

• If you reactivate the task again in develop then the task-status becomes DEVELOP. You
can now make additional changes in the develop environment.

A second important attribute of the task-type is the quick fix level.

A quick fix is a modification to a file in an environment, which is not the lowest environment
for that file. Example: consider a file that was created in the develop environment and
transferred to acceptance and production. The lowest environment for this file is now the
develop environment and a quick fix is a modification to the file in acceptance or in
production.

 Configuration and Sizing

8999 8298–510 10–35

The quick-fix-level identifies the environment where a task with this task-type can be quick-
fixed. If this field is not entered, then the task cannot be used for quick fix purposes.

A separate task type is required for each environment where you want to make changes to
files. For quick fixes, you can set the environment and quick fix level to the named
environment. The following table shows the settings for the previous example.

Task-type FEATURE: Environment

Quick Fix level

= DEVELOP

= <empty>

Task-type QUICK-FIX: Environment

Quick Fix level

= PRODUCTION

= PRODUCTION

The files can be modified in develop for regular maintenance and in production for quick

fixes.

10.7.3. (Configuration) Task Group

A task group combines a task type with a project and additionally a short description.

Task groups are used for two reasons:

• The task naming facility.

 Task-names of newly added tasks are automatically determined by SURE. If you are
using task groups then the new task name is based on the name of the task-group. If you
are not using task groups, then the new task name is based on the project name.

• A shortcut when a new task is added:

Configuration and Sizing

10–36 8999 8298–510

 A project can be linked to a task-group.

 A task-type can be linked to a task-group.

 A task-environment can be linked to a task-type.

 A priority can be linked to a task-type.

 Each task must have a task-type, a project and a task-environment. These three
attributes are required if a new task is added to SURE. (Priority is an optional task
attribute). A newly added task inherits the task-type and project from the task-group,
and the task-environment from the task-type. If these three attributes are found via
inheritance, then it is enough to enter the task-group when a new task is added;
otherwise, the missing attributes have to be entered too.

 A static task-group is a task-group that contains all three attributes: each task that is
added via a static task group has a similar name (based on the name of the task group)
and the same task-type, project and task-environment.

 A dynamic task-group is a task-group that misses one (or more) of the three attributes:
each task that is added via a dynamic task group has a similar name (based on the name
of the task group), but the task-type, project or task-environment can differ.

10.7.4. (Configuration) Task Priority

The task priority is used for query and reporting purposes.

The customer can define his own list of task priorities via explorer folder
Configuration/Drop Down box value/Task Priority.

It is possible to define special customized workflow folders via the ‘Macro’ function. The
task-priority can be used in the task-selection-expression of such a customized workflow
folder.

The task popup menu allows changing of this priority field. For this reason, the priority field
can be used for moving tasks from one customized workflow folder to another.

10.8. (Configuration) Organization Entities

• Employee Function

• Team

• User

For a user there are two important entities:

• The employee function or the user’s role in the organization. The employee function
contains a security map, which defines the actions that may be performed. Secondly, an
employee function is used for task routing purposes. A task can be assigned to an
employee-function and then all users with that employee-function receive the task in
their To-Do lists.

 Configuration and Sizing

8999 8298–510 10–37

• A team is a group of people teamed together as a work unit. A team can also be used for
task routing purposes. A task can be assigned to a team or to an employee function.
Together with the assigned projects for a user, the workflow queues are assembled.

The following paragraphs describe the above-mentioned entities with more detail.

Chapter ‘Authorization Mechanism’ of the manual gives detailed information about
usercodes, employee functions, teams, and the authorization mechanism.

Chapter ‘Task’ of the manual gives detailed information about To-Do lists.

10.8.1. (Configuration) Employee Function

The employee function is a role within a company performed by a group of employees. A
usercode can be linked to zero, one or more employee functions. For this reason, one should
choose elementary roles within a company.

The employee function is used in two different ways:

• Security:

 Every employee function may contain a security map. A user is linked to one or more
employee functions. The combined security maps of these different employee functions
determine the function matrix of the user.

• Task Routing:

 A task can be assigned to an employee function. Every user who has the employee
function gets that task in his To-Do list.

 If a user is assigned to one or more projects then only the files/tasks of those projects
are visible for him. For example: tasks of other projects won’t appear in his To-Do list,
even if these tasks are routed to one of his employee-functions.

10.8.2. (Configuration) Team

A team is a group of usercodes. A usercode can be linked to zero, one or more teams. Each
user of a team may have different employee functions.

The team definition is used for the following:

• Project assignment:

 A team can be linked to zero, one or more projects. A user inherits the (merged) project-
lists of his teams. The merged team-project-list overrules an individual project list of the
user.

 The project-list works as a filter: if user does not have a project-list (directly or
indirectly via his teams) then he can see all files. If he has a project-list then he can only
see the files of his projects.

Configuration and Sizing

10–38 8999 8298–510

• Task Routing:

 A task can be assigned to a team. Each member of the team gets this task in his To-Do
list. The security is still defined at employee function.

• Contents of Life-cycle Work Flow folders:

 The content of the various team life-cycle folders is affected by the team definition. For
example, the folder Life-cycle/Team Task/Busy contains all the busy tasks of the
members of all my teams.

10.8.3. (Configuration) User

The user entity contains an entry for each user that can log-on to the system. A usercode that
is not announced in SURE cannot log-on to SURE. The log-on procedure validates the
usercode and password against the userdatafile. For this reason, each SURE user also needs
to be defined in the userdatafile.

The user definition supports (amongst others) the following:

• Project Definition:

 A user can be linked to zero, one or more projects. If a user is NOT linked to any project
then all files/tasks of all projects are visible for him. If a user is linked to one or more
projects, then only the files/tasks of those projects are visible for him.

• Team Definition:

 A user can be linked to zero, one or more teams. These teams determine the project
assignment of the user and affect the contents of his life-cycle workflow folders.

 A project-list that is inherited from the team(s) overrules an individual project-list.

• Employee Function:

 A user can be linked to zero, one or more employee functions. These employee functions
determine the security map for a user and affect the contents of his To-Do list.

• Individual Security:

 Security may be defined at individual user level. The usercode where the SURE
installation is started contains an individual security map. With this installation user the
rest of the system can be configured. An individual security map overrules the security
map that was inherited from the employee functions.

• Default environment:

 A user is linked to a SURE-environment. Each time when he logs on to SURE, he will be
routed to his default environment. From there, he can navigate to other environments.

	Section 10 Configuration and Sizing
	10.1. (Configuration) Terminology
	10.2. (Configuration) Quick Overview to SURE
	10.3. (Configuration) SURE Configuration
	10.4. (Configuration) Goal
	10.5. (Configuration) Functionality
	10.6. (Configuration) File Entities
	10.6.1. (Configuration) Environment
	10.6.2. (Configuration) System
	10.6.2.1. (Configuration) Work Location and Object Location
	10.6.2.2. (Configuration) Private Workspace / Shared Resources
	10.6.2.3. (Configuration) Shared Workspace / Shared Resources
	10.6.2.4. (Configuration) Private Workspace / Private Resources
	10.6.2.5. (Configuration) Multiple Baselines
	10.6.2.6. (Configuration) Hybrid Configuration
	10.6.2.7. (Configuration) Summary

	10.6.3. (Configuration) Project
	10.6.4. (Configuration) File Type
	10.6.5. (Configuration) File

	10.7. Configuration) Task Entities
	10.7.1. (Configuration) Task
	10.7.2. (Configuration) Task Type
	10.7.3. (Configuration) Task Group
	10.7.4. (Configuration) Task Priority

	10.8. (Configuration) Organization Entities
	10.8.1. (Configuration) Employee Function
	10.8.2. (Configuration) Team
	10.8.3. (Configuration) User

